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Abstract

A new approach for deriving priorities from fuzzy pairwise comparison judgements is proposed, based on
�-cuts decomposition of the fuzzy judgements into a series of interval comparisons. The assessment of the
priorities from the pairwise comparison intervals is formulated as an optimisation problem, maximising the
decision-maker’s satisfaction with a speci4c crisp priority vector. A fuzzy preference programming method,
which transforms the interval prioritisation task into a fuzzy linear programming problem is applied to derive
optimal crisp priorities. Aggregating the optimal priorities, which correspond to di5erent �-cut levels enables
overall crisp scores of the prioritisation elements to be obtained.

A modi4cation of the linear fuzzy preference programming method is also proposed to derive priorities
directly from fuzzy judgements, without applying �-cut transformations. The formulation of the prioritisation
problem as an optimisation task is similar to the previous approach, but it requires the solution of a non-linear
optimisation program. The second approach also derives crisp priorities and has the advantage that it does not
need additional aggregation and ranking procedures.

Both proposed methods are illustrated by numerical examples and compared to some of the existing fuzzy
prioritisation methods.
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1. Introduction

The analytic hierarchy process (AHP) method [17] is widely used for multicriteria decision-
making and has successfully been applied to many practical decision-making problems. In spite of its
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popularity, the method is often criticised for its inability to adequately handle the inherent uncertainty
and imprecision associated with the mapping of a decision-maker’s perception to crisp numbers [10].
The empirical e5ectiveness and theoretical validity of the AHP have also been discussed by many
authors [3,5,12], and this discussion has focused on four main areas: the axiomatic foundation, the
correct meaning of priorities, the 1–9 measurement scale and the rank reversal problem. However,
most of the problems in these areas have been partially resolved, at least for three-level hierarchic
structures [15].

It is not our intention to contribute further to that discussion. Rather, the main objective of this
paper is to propose a new approach to tackling uncertainty and imprecision within the prioritisation
process in the AHP, in particular, when the decision-maker’s judgements are represented as fuzzy
numbers or fuzzy sets.

In the AHP, the decision problem is structured hierarchically at di5erent levels, each level consist-
ing of a 4nite number of elements. The relative importance of the decision elements (i.e. the weights
of the criteria and the scores of the alternatives) is assessed indirectly from comparison judgements.

Pairwise comparisons in the AHP assume that the decision-maker can compare any two elements
Ei, Ej at the same level of the hierarchy and provide a numerical value aij for the ratio of their
importance. If the element Ei is preferred to Ej then aij¿1. Correspondingly, the reciprocal property
aji = 1=aij; aij¿0, for j= 1; 2; : : : ; n, i = 1; 2; : : : ; n; always holds.

Each set of comparisons for a level with n elements requires n(n − 1)=2 judgements, which are
further used to construct a positive reciprocal matrix of pairwise comparisons A= {aij}∈�n×n.

The priority vector w= (w1; w2; : : : ; wn)T may be obtained from the comparison matrix by applying
some prioritisation method, e.g. the eigenvalue method, the logarithmic least squares method, the
weighted least squares method and the goal programming method [2,17], or the fuzzy programming
method [16] recently proposed by the author of this paper.

However, in many cases the preference model of the human decision-maker is uncertain and
fuzzy and it is relatively diGcult crisp numerical values of the comparison ratios to be provided.
The decision-maker may be uncertain about his level of preference due to incomplete information
or knowledge, inherent complexity and uncertainty within the decision environment, lack of an
appropriate measure or scale.

A natural way to cope with uncertain judgements is to express the comparison ratios as fuzzy
sets or fuzzy numbers, which incorporate the vagueness of the human thinking. When comparing
two elements Ei and Ej, the exact numerical ratio aij can be approximated with a fuzzy ratio “about
aij”, which is represented by a fuzzy number ãij.

Van Laarhoven and Pedrycz [14] extend the AHP to a fuzzy hierarchical analysis, using com-
parison matrices with triangular fuzzy numbers. They obtain fuzzy priorities w̃i, i= 1; 2; : : : ; n by
applying a fuzzy version of the Logarithmic least squares method.

Wagenknecht and Hartmann [18] employ the least squares method to calculate fuzzy priorities w̃i,
i= 1; 2; : : : ; n, which approximate the fuzzy ratios ãij so that ãij ≈ w̃i=w̃j. The obtained fuzzy priorities
are represented as (L–R) fuzzy numbers. In the same paper, the authors propose another approach
where the fuzzy priorities are calculated from a fuzzy comparison matrix using the geometric mean:

w̃i =
n∏
j=1

(ãij)1=n:
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The approach proposed by Buckley [8], is rather similar to the second approach of
Wagenknecht and Hartmann. Buckley employs trapezoidal fuzzy numbers, claiming that such num-
bers are more easily understood by experts. The prioritisation process is also based on the geometric
mean, and the derived priorities are combined in the Saaty hierarchy to compute the 4nal fuzzy
scores, which are then compared by fuzzy ranking.

Another approach for fuzzy prioritisation, called synthetic extent analysis, is given in [9]. The
author applies a simple arithmetic mean algorithm to 4nd fuzzy priorities from comparison matrices,
whose elements are represented by fuzzy triangular numbers. However, the arithmetic mean is a
very naLMve prioritisation approach, as shown by Saaty [17], and can be used only if the comparison
matrices are consistent.

The fuzzy prioritisation methods mentioned above have some common characteristics. Firstly,
they derive priorities from fuzzy comparison matrices. However, the approach of constructing fuzzy
reciprocal matrices, taken by analogy from the crisp prioritisation methods leads to some problems,
as demonstrated in the next section. In addition, in some cases the decision-maker might be unwilling
or unable to provide all fuzzy comparisons necessary to construct full comparison matrices.

Secondly, all these methods derive fuzzy priorities and, after aggregating, the 4nal scores of
the alternatives are also represented as fuzzy numbers or fuzzy sets. Due to the large number of
multiplication and addition operations, the resulting fuzzy scores have wide supports and overlap
over a large range. As shown in [6,13], the normalisation procedure used in some of these methods
may even result in irrational 4nal fuzzy scores, where the normalised upper value¡normalised mean
value¡normalised lower value.

Finally, the fuzzy prioritisation methods mentioned above require an additional fuzzy ranking
procedure in order to compare the 4nal fuzzy scores. The di5erent ranking procedures, however,
often give di5erent ranking results [7].

In this paper, a new approach for deriving priorities from fuzzy comparison judgements is pro-
posed, that eliminates some of the drawbacks of the existing fuzzy prioritisation methods. This
approach does not require the construction of fuzzy comparison matrices and it can derive priorities
from an incomplete set of fuzzy judgements. The proposed approach is also invariant to the speci4c
form of the fuzzy sets used to represent the judgements, and can be applied when some of the
judgements are represented as intervals or crisp values.

By using �-cuts, the initial fuzzy judgements are transformed into a series of interval judgements.
A new fuzzy preference programming (FPP) method is employed to derive crisp priorities from the
interval judgements, corresponding to each �-cut level, thus eliminating the need for an additional
fuzzy ranking procedure. A simple aggregation is then used to obtain crisp overall values of the
priorities.

Finally, a non-linear modi4cation of the FPP method is proposed for a direct assessment of
priorities without decomposing the fuzzy judgements by �-cuts.

2. Fuzzy comparison matrices

In this paper and in the examples, we represent the decision-maker’s uncertain judgements using
a speci4c form of normal fuzzy sets, which are called fuzzy numbers [11]; however, the speci4c
form of the fuzzy sets does not restrict the applicability of our approach.
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A normal fuzzy set Ñ is a triangular fuzzy number, de4ned by three real numbers a6b6c, and
has a linear piecewise continuous membership function �Ñ (x) with the following characteristics [11]:

1. a continuous mapping from � to the closed interval [0,1];
2. �Ñ (x) = 0 for all x∈ [−∞; a] and for all x∈ [c;+∞];
3. strictly linearly increasing on [a; b] and strictly linearly decreasing on [b; c];
4. �Ñ (x) = 1 for x= b.

The fuzzy number Ñ can be expressed as a triple (a; b; c), where b is the most possible value of
the fuzzy number; and a and c are the lower and the upper bounds, respectively, representing the
scope of the fuzziness of the fuzzy number.

Let us consider a prioritisation problem with n unknown priorities w= (w1; w2; : : : ; wn)T, where the
pairwise comparison judgements are represented by fuzzy numbers ãij = (lij; mij; uij).

The known fuzzy prioritisation methods require a full set of m= n(n − 1)=2 comparison judge-
ments, in order to construct a positive reciprocal matrix of pairwise comparisons Ã= {ãij} of the
type:

Ã =




1 ã12 · · · ã1n

ã21 1 · · · ã2n

...
...

. . .
...

ãn1 ãn2 · · · 1


 ; (1)

where ãji = 1=ãij = (1=uij; 1=mij; 1=lij). For de4nitions of the basic arithmetic operations on fuzzy
numbers the reader could refer to [11].

This approach of constructing fuzzy reciprocal matrices, taken by analogy from the crisp pri-
oritisation methods however leads to some problems, due to the non-linearity of the Saaty 1–
9 scale in the region of values between 1=9 and 1. We will illustrate this using two simple
examples.

Example 1. Consider a perfectly consistent two-dimensional prioritisation problem, where there are
only two elements to be compared pairwisely. The decision-maker regards the 4rst element as ap-
proximately two times more important than the second one, so his judgement can be represented
by a symmetrical fuzzy number “about two”, ã12 = (1; 2; 3). The solution of the prioritisation prob-
lem by existing fuzzy methods requires 4nding fuzzy priorities w̃1¿0 and w̃2¿0, such that their
ratio approximately satis4es the initial judgement, i.e. r̃12 = w̃1=w̃2 ≈ ã12. The normalisation constraint
w̃1 + w̃2 = 1̃ must also be satis4ed.

In order to apply some of the existing fuzzy prioritisation methods we have to construct a fuzzy
comparison matrix (1), calculating the reciprocal fuzzy judgement, which is ã21 = (1=3; 1=2; 1). It
is evident, however, that the reciprocal fuzzy number is non-symmetrical. This asymmetry of the
reciprocal judgements in the fuzzy comparison matrix, constructed from symmetrical elements, leads
to non-symmetrical 4nal fuzzy scores. For instance, applying the fuzzy geometric mean method [8],
the following fuzzy normalised priorities can be obtained:

w̃1 = (0:367; 0:667; 1:098); w̃2 = (0:210; 0:333; 0:634):
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The resulting fuzzy ratio, corresponding to these fuzzy priorities can easily be calculated, using the
division operator, de4ned in [11]:

r̃12 = w̃1=w̃2 = (0:577; 2:0; 5:196):

It is seen that the ratio r̃12 is rather dissimilar to the initial fuzzy judgement ã12 = (1; 2; 3). Further-
more, the fuzzy ratio is strongly skewed, in contrast to the initial symmetrical judgement.

The resulting fuzzy priorities can be compared, using some of the fuzzy ranking methods. For
example, the centre of gravity (CoG) defuzzi4cation method [7] gives the following crisp values of
the priorities:

w1c = 0:71; w2c = 0:393; where the resulting crisp ratio is r12c =w1c=w2c = 1:808:

Solving the same two-dimensional problem with crisp judgements a12 = 2 and a21 = 0:5 by any
crisp prioritisation method will give us perfectly consistent normalised priorities w1n = 2=3, w2n = 1=3,
so that the ratio r12n =w1n=w2n = 2 is equal to the initial judgement.

It can be concluded that the introduction of additional reciprocal elements and the construction of
full fuzzy comparison matrices lead to some inaccuracy in the 4nal results. Moreover, the skewed
reciprocals might reverse the 4nal ranking of the elements if an inverse ratio scale is used. It
is proved by Barzilai [2] that the geometric mean method is independent of scale inversion and
preserves rank strongly for crisp comparison matrices. But this property of the geometric mean does
not hold in the fuzzy cases, even if the pairwise comparisons are perfectly consistent.

To illustrate the rank reversal phenomenon, let us consider again the simple two-dimensional
problem, described in the previous example.

Example 2. Suppose that the decision-maker is almost indi5erent between the two elements. If he
is asked to assess by how much the 4rst element is better than the second one, the answer can
be expressed by the fuzzy number “about one”, i.e. ã12 = (0:5; 1; 1:5). The corresponding reciprocal
element in the fuzzy comparison matrix then is ã21 = (2=3; 1; 2), and the solution of the problem by
the fuzzy geometric mean method gives the following normalised weights:

w̃1 = (0:268; 0:5; 0:804); w̃2 = (0:309; 0:5; 0:928):

The resulting fuzzy priorities are shown in Fig. 1(a). Using the CoG ranking procedure, we can
get the corresponding defuzzi4ed crisp values

w1c = 0:52 and w2c = 0:58; where r12c = w1c=w2c = 0:9:

But if the decision-maker was asked by how much the second element is better or worse than
the 4rst one, he would provide the same fuzzy ratio “about one”, i.e. ã21 = (0:5; 1; 1:5). In this case,
the resulting comparison matrix is componentwisely inverse to the previous one. Solving the inverse
fuzzy prioritisation problem, we can get

w̃1 = (0:309; 0:5; 0:928); w̃2 = (0:268; 0:5; 0:804); w1c = 0:58; w2c = 0:52; r12c = 1:1:

Fig. 1(b) illustrates these results. It is evident that the ranking of the elements is reversed, hence
the 4nal solution depends on the description of the problem and it is not independent of the scale
inversion.
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Fig. 1. Fuzzy solutions for Example 2: (a) ã12 = (0:5; 1; 1:5), (b) ã21 = (0:5; 1; 1:5).

Obviously, the violation of the strong rank reversal property of the fuzzy geometric mean method
results from the non-linearity of the ratio scale and construction of skewed fuzzy reciprocal matri-
ces. On the other hand, the reciprocal elements in these matrices do not provide some additional
information, so their use should be avoided.

The fuzzy prioritisation approach, described in the following section does not require the con-
struction of reciprocal matrices and thus could eliminate some of the problems discussed above.

3. Fuzzy prioritisation approach

Consider a prioritisation problem with n elements, and suppose that the decision-maker can provide
a set F = {ãij} of m6n(n−1)=2 fuzzy comparison judgements, i= 1; 2; : : : ; n−1, j= 2; 3; : : : ; n, j¿i,
which are represented as normal convex fuzzy sets or fuzzy numbers. The crisp sets of the ratios
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between the unknown crisp priorities wi=wj ∈�+ that belong to the fuzzy judgement ãij to degree of
� are called �-level sets (or simply �-cuts) of ãij, and are de4ned as aij(�) = {wi=wj ∈�+ | �ãij(wi=wj)
¿�} [20]. Using this concept, each fuzzy judgement ãij can be represented as a sequence of sets
aij(�l), l= 1; 2; : : : ; L, where 0 = �1¡�2¡ · · ·¡�L = 1. For �= 0, the corresponding �-level interval
represents the support of the fuzzy judgement ãij, while aij(1) is the core of ãij.

Since the fuzzy judgements are normal convex fuzzy sets or triangular fuzzy numbers ãij = (lij; mij;
uij), the �-level sets aij(�l) = [lij(�l); uij(�l)] are closed intervals, such that aij(1)⊆ aij(�L−1)⊆ · · ·
⊆ aij(0), where lij(�l) and uij(�l) are the lower and the upper bounds of the corresponding intervals.
By applying �-cuts, the initial set of fuzzy comparisons F = {ãij} can be converted into a series of
L interval sets Fl = {aij(�l)}; l= 1; 2; : : : ; L.

The main idea behind the proposed approach for fuzzy prioritisation is to 4nd crisp values of
the priorities w(�l) = (w1(�l); w2(�l); : : : ; wn(�l))T; l= 1; 2; : : : ; L, corresponding to each interval set
of pairwise comparisons Fl and then to aggregate the results in order to obtain 4nal crisp values of
the priorities.

The fuzzy programming method proposed by Mikhailov [16] that derives priorities from crisp
comparison matrices is modi4ed to 4nd crisp priorities from the interval sets of judgements. The
new FPP method, described in the next section represents the interval judgements at each �-level as
fuzzy linear constraints and de4nes a convex fuzzy feasible area of all possible solutions. Then the
assessment of the priorities is stated as an optimisation problem, maximising the decision-maker’s
satisfaction with a speci4c crisp priority vector.

4. Fuzzy preference programming method

Consider a set of m6n(n− 1)=2 interval pairwise comparison judgements Fl = {lij(�l); uij(�l)} at
the level �= �l. When the interval judgements are consistent, there are many priority vectors, whose
elements satisfy the inequalities

lij(�) 6
wi
wj
6 uij(�): (2)

If the judgements are inconsistent, there is no priority vector that satis4es all interval judgements
simultaneously. However, it is reasonable to try and 4nd a vector that satis4es all judgements “as well
as possible”. This implies that a good enough solution vector has to satisfy all interval judgements
approximately, or

lij(�)6̃
wi
wj
6̃uij(�); (3)

where the symbol 6̃ denotes the statement “fuzzy less or equal to”.
In order to handle the above inequalities easily we can represent them as a set of single-side fuzzy

constraints:

wi − wjuij(�)6̃0;

− wi + wjlij(�)6̃0: (4)
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The above set of 2m fuzzy constraints can be given in a matrix form as

Rw6̃0; (5)

where the matrix R∈�2m×n.
The kth row of (5), denoted by Rkw6̃0; k = 1; 2; : : : ; 2m, represents a fuzzy linear constraint and

may be characterised by a linear membership function of the type

�k(Rkw) =

{
1 − Rkw

dk
; Rkw 6 dk;

0; Rkw ¿ dk;
(6)

where dk is a tolerance parameter, denoting the admissible interval of approximate satisfaction of
the crisp inequality Rkw60.

The membership function (6) represents the decision-maker’s satisfaction with a speci4c priority
vector, with respect to the kth single-side constraint (4). The value of the of membership function
�k(Rkw) is equal to zero when the corresponding crisp constraint Rkw60 is strongly violated; it
linearly increases and takes positive values less than 1 when the constraint is approximately satis4ed
and is greater than 1 when the constraint is fully satis4ed.

Let �k(Rkw); k = 1; 2; : : : ; 2m be membership functions of the fuzzy constraints Rkw6̃0 on the
(n− 1)-dimensional simplex

Qn−1 = {(w1; : : : ; wn) |wi ¿ 0; w1 + · · · + wn = 1}: (7)

De nition 1. The fuzzy feasible area P̃ on the simplex Qn−1 is a fuzzy set, described by the
membership function

�P̃(w) = [min{�1(R1w); : : : ; �m(Rmw)} |w1 + · · · + wn = 1]: (8)

The fuzzy feasible area is de4ned as an intersection of all fuzzy constraints on the simplex. If the
initial interval judgements are inconsistent, by choosing “large enough” tolerance parameters we can
obtain a non-empty fuzzy feasible area. It can easily be proved that a non-empty feasible area P̃ on
the simplex Qn−1 is a convex fuzzy set [16].

The convex fuzzy feasible area P̃ represents the overall satisfaction of the decision-maker with
a speci4c crisp priority vector w. Assuming that the decision-maker is interested in the best-
possible solution, it is reasonable to determine a priority vector that maximises his overall degree of
satisfaction.

De nition 2. The maximising solution is a crisp vector w∗, which corresponds to the maximum of
the fuzzy feasible area

�P̃(w∗) = max[min{�1(R1w); : : : ; �m(Rmw)} |w1 + · · · + wn = 1]: (9)

Since the fuzzy feasible area P̃ is a convex set and all fuzzy constraints are de4ned as convex sets,
there is always a point w∗ on the simplex that has a maximum degree of membership in P̃.
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The max–min operator for deriving a maximising solution was proposed by Bellman and Zadeh
[4] for general decision-making problems with fuzzy goals and fuzzy constraints. Their approach
integrates the goals and the constraints, so that the di5erence between them essentially disappears.
Zimmermann [20] employs Bellman and Zadeh’s idea for problems with linear fuzzy goals and
linear fuzzy constraints and shows that the max–min fuzzy linear problem can be transformed into
a conventional linear program.

Similarly, by introducing a new variable �, measuring the degree of membership of a given priority
vector in the fuzzy feasible area P̃ and using (6) and (9), we can represent the problem of 4nding
the maximising solution as a linear program:

maximise �

subject to dk�+ Rkw 6 dk;
n∑
i=1

wi = 1; wi ¿ 0; i= 1; 2; : : : ; n; k = 1; 2; : : : ; 2m:
(10)

The optimal solution to the above linear program is a vector (w∗; �∗), whose 4rst component rep-
resents the priority vector that has a maximum degree of membership in the fuzzy feasible area,
whereas the second component gives the value of that maximum degree, �∗ = �P̃(w∗). The value of
�∗ measures the degree of satisfaction and is a natural indicator for the inconsistency of the decision-
maker’s judgements, so we can call it a consistency index [16]. When the interval judgements are
consistent, �∗¿1. For inconsistent judgements the consistency index �∗ takes a value between 1 and
0 that depends on the degree of inconsistency and the values of the tolerance parameters dk .

The tolerance parameters should be chosen large enough to ensure the non-emptiness of the
feasible area P̃ and a positive value of �∗. The next section shows that values of these parameters
greater than or equal to 1 satisfy such requirements.

If the fuzzy judgements are symmetrical, it is reasonable for all tolerance parameters to be set equal
to 1, since usually the decision maker has no preferences about his individual pairwise comparison
judgements. It should be noted that equal values of all tolerance parameters do not a5ect the value
of the maximising solution w∗.

A simple algorithm for adjusting the tolerance parameters, which maximises the degree of mem-
bership when the fuzzy judgements are non-symmetrical, is proposed in Section 6.

5. Numerical results

Let us consider the solution to the two-dimensional prioritisation problems, described in
Section 2, by applying the proposed approach. The fuzzy judgement provided by the decision-maker
is a triangular fuzzy number ã12 = (l12; m12; u12). The priority ratios at each �-cut level should satisfy
l12(�)6w1=w26u12(�), where the bounds of the �-cut intervals are

l12(�) = �(m12 − l12) + l12;

u12(�) = �(m12 − u12) + u12:
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Fig. 2. The fuzzy feasible area (Example 1) as a function of the tolerance parameters.

The solution of the prioritisation problem at each �-cut level can be obtained by solving a linear
program of the type:

maximise �

subject to d1�+ w1 − u12(�)w2 6 d1;

d2�− w1 + l12(�)w2 6 d2;

w1 + w2 = 1; wi ¿ 0; i = 1; 2:

(11)

If the tolerance parameters d1 and d2, corresponding to both interval bounds are equal, d1 =d2 =d,
the solution of (11) does not depend on the speci4c value of d.

This can be illustrated, considering the solution of the linear program for �= 0, when the fuzzy
comparison judgement is ã12 = (1; 2; 3), as in Example 1. In this case, the interval bounds represent
the support of the fuzzy number ã12, or we have a12(0) = (1; 3). The membership function of the
fuzzy feasible area P̃ on the simplex w1 + w2 = 1 for di5erent values of the tolerance parameter d
is shown in Fig. 2.

It is evident that the value of the maximising solution ratio w1=w2 = 2 does not depend on the
value of d and lies exactly in the middle of the interval a12(0) = (1; 3). The value of the consistency
index � (i.e. the maximum degree of membership), however, depends on d, but it is always greater
than 1, indicating a consistent solution.

The projections of the fuzzy linear constraints (4) on the w1–w2 plane, for di5erent values of
the tolerance parameter d are shown in Fig. 3. It is evident that if d= 1, the scope of the feasible
area P̃ is very large and encloses the whole simplex line w1 + w2 = 1. It follows that such a value
of the tolerance parameters guarantees non-emptiness of the fuzzy feasible area, even if we have
many inconsistent judgements. It should be mentioned that two-dimensional prioritisation problems
are always consistent.

The solutions to the linear problem (11) for each �-cut level are equal, w1 = 0:667; w2 = 0:333,
because the initial fuzzy judgement ã12 = (1; 2; 3) is symmetrical, and the means of all �-cut intervals
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Fig. 3. Fuzzy linear constraints of the two-dimensional prioritisation problem.

are equal to the mean of the fuzzy judgement m12 = 2. The optimal solution ratio w1=w2 = 2
corresponds to the mean of the fuzzy judgement and equally satis4es both interval boundary con-
straints. For each �-cut level, the value of � is greater than 1, which indicates that we have a series
of consistent prioritisation problems.

Similar results can be obtained, when ã12 = (0:5; 1; 1:5) (see Example 2 of Section 2). In this
case, the solutions at each �-level are also equal, w1 = 0:5; w2 = 0:5, and the solution ratio lies at
the mean of the fuzzy judgement.

Example 3. Consider again a two-dimensional fuzzy prioritisation problem. If the fuzzy judgement
is not symmetrical, then the solutions to the linear programs at each �-level are not equal. For
example, if ã12 = (0:5; 1; 3), then we have the solutions, given in Table 1. But it can be observed
that the solution ratios are also exactly in the middle of the �-level intervals, as in the previous
examples.

Example 4. In order to illustrate the performance of our approach, in particular when some of
the interval judgements are inconsistent, we will consider the example given by Boender [6]. The
decision-maker compares three elements and provides the following fuzzy judgements:

ã21 = (2:5; 3; 3:5); ã31 = (4; 5; 6); ã32 = (1:5; 2; 2:5):

Setting all tolerance parameters equal to 1 and applying the proposed approach, we can get the
results shown in Table 2 and Fig. 4.

It is seen that the value of the consistency index �¿1 for all �60:7, which indicates that the
corresponding interval judgements for these �-levels are consistent, i.e. the solution ratios lie within
these intervals.
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Table 1
Solutions of the FPP method for each �-cut level, Example 3

� l12(�) u12(�) w1 w2 w1=w2 �

0 0.5 3 0.636 0.364 1.750 1.455
0.1 0.55 2.8 0.626 0.374 1.675 1.421
0.2 0.6 2.6 0.615 0.385 1.600 1.385
0.3 0.65 2.4 0.604 0.396 1.525 1.347
0.4 0.7 2.2 0.592 0.408 1.450 1.306
0.5 0.75 2 0.579 0.421 1.375 1.263
0.6 0.8 1.8 0.565 0.435 1.300 1.217
0.7 0.85 1.6 0.551 0.449 1.225 1.169
0.8 0.9 1.4 0.535 0.465 1.150 1.116
0.9 0.95 1.2 0.518 0.482 1.075 1.060
1.0 1.0 1.0 0.500 0.500 1.000 1.000

Table 2
Solutions of the FPP method for each �-cut level, Example 4

� w1 w2 w3 �

0 0.1111 0.3333 0.5556 1.056
0.1 0.1099 0.3297 0.5604 1.049
0.2 0.1087 0.3261 0.5652 1.043
0.3 0.1075 0.3226 0.5699 1.038
0.4 0.1075 0.3197 0.5728 1.029
0.5 0.1081 0.3171 0.5748 1.020
0.6 0.1087 0.3146 0.5767 1.010
0.7 0.1093 0.3123 0.5785 1.001
0.8 0.1099 0.3099 0.5802 0.9913
0.9 0.1105 0.3077 0.5818 0.9817
1.0 0.1111 0.3056 0.5833 0.9722

A graphical illustration of such consistent interval judgements at level �= 0:2 and the correspond-
ing optimal solution are shown in Fig. 5. The upper and lower constraints of each interval are
represented as lines in the w1–w2 plane via elimination of the third dependent variable, w3 = 1 −
w1 − w2 in the constraint equations, as shown in [1].

Fig. 6 represents an inconsistent set of interval judgements at level �= 0:8, where the intersection
of all linear interval constraints is an empty set. The solution obtained by the FPP method satis4es
approximately all interval judgements at that level.

The fuzzy solutions obtained by three other fuzzy methods [6] are represented in Table 3 for
comparison. It is seen from Tables 2 and 3 that the range of our crisp solutions over all �-cut levels
is much smaller.
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Fig. 4. Results for the three-dimensional Example 4.

Table 3
Fuzzy results for Example 4

w̃1 w̃2 w̃3

Buckley (0.09, 0.11, 0.15) (0.24, 0.31, 0.42) (0.42, 0.58, 0.77)
Van Laarhoven, Pedrycz (0.09, 0.11, 0.13) (0.25, 0.31, 0.40) (0.44, 0.58, 0.75)
Boender et al. (0.10, 0.11, 0.12) (0.28, 0.31, 0.35) (0.50, 0.58, 0.66)

6. Adjustment of the tolerance parameters

From the previous examples it can be observed that in perfectly consistent cases, the solution
ratios lie in the middle of the intervals, if the tolerance parameters are equal. Moreover, if the fuzzy
judgements are symmetrical, the solution ratios are also equal to the means of these judgements.
Generally, if the condition for perfect consistency mij =mikmkj holds and the fuzzy judgements are
symmetrical, the solution ratios obtained by the FPP method, are always in the means mij of the
judgements. Since the means have the highest degree of membership in the initial fuzzy judgements,
it is reasonable to try to adjust the tolerance parameters in the membership functions (6) so that the
solution ratios have the maximum degree of membership, when the judgements are non-symmetrical
or inconsistent.

Consider a single interval aij(�) = [lij(�); uij(�)]. The intersection of the positive parts of the linear
membership functions (6), corresponding to its lower and upper bound de4nes a convex membership
function for this interval �ij = min(�L

ij ; �
U
ij) of the type shown in Fig. 2, where

�L
ij = 1 − (−wi + lij(�)wj)

dL
ij

= 1 +
wi=wj − lij(�)
dL
ij=wj

;

�U
ij = 1 − (wi − uij(�)wj)

dU
ij

= 1 +
uij(�) − wi=wj
dU
ij =wj

: (12)

Here dL
ij and dU

ij denote the lower and upper tolerance parameters for this interval.
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Fig. 5. Consistent interval judgements, �= 0:2, Example 4.

The interval membership function �ij = min(�L
ij ; �

U
ij) has a maximum at the intersection point

�L
ij = �U

ij , corresponding to a ratio that can be easily obtained from (12):

wi
wj

=
dU
ij lij(�) + dL

ijuij(�)

dU
ij + dL

ij
: (13)

When the tolerance parameters are equal, then the maximising ratio is in the middle of the
interval:

wi
wj

=
lij(�) + uij(�)

2
= cij(�): (14)

If the fuzzy judgement ãij = (lij; mij; uij) is symmetrical, the projection of the mean mij on the
�-level interval aij(�) = [lij(�); uij(�)] coincides with the midpoint of that interval cij(�). This in-
dicates that by applying equal tolerance parameters, the maximising ratio will have a maximum
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Fig. 6. Inconsistent interval judgements, �= 0:8, Example 4.

degree in the membership function of the initial fuzzy judgment. But if the fuzzy judgement is not
symmetrical, then the tolerance parameters could be chosen so that the maximising ratio (13) corre-
sponds to the mean mij, therefore the ratio has a maximum degree of membership in the fuzzy set
ãij = (lij; mij; uij).

Substituting wi=wj =mij in (13), and setting �L(�) =mij − lij(�), �U(�) = uij(�) − mij, we
have

�L(�)
dL
ij

=
�U(�)
dU
ij
: (15)

Eq. (15) can be used for an automatic adjustment of the tolerance parameters, in order to obtain a
solution ratio maximising the degree of membership in the fuzzy judgements. Because we have two
tolerance parameters for each interval, the parameter corresponding to the smaller deviation �L(�)
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or �U(�) should be 4xed, for example equal to 1. Then the second tolerance parameter, determined
from (15) will have a value greater than 1, which guarantees a non-empty fuzzy feasible area. If
the fuzzy judgement is symmetrical, then �L(�) =�U(�), and it follows that dL

ij =dU
ij = 1.

Applying the proposed procedure for adjustment of the tolerance parameters to the non-symmetrical
two-dimensional problem from Example 3, at each �-level we obtain equal results, w1 = 0:5; w2 = 0:5,
so all solution ratios are equal to the mean of the fuzzy judgement. Because the fuzzy judgements
in the three-dimensional Example 4 are all symmetrical, there is no need for additional adjustment
of the tolerance parameters.

7. Aggregation of the priorities

Decomposing the fuzzy comparison judgements into a series of interval judgements by �-cuts and
applying the FPP method, we can obtain a sequence of crisp priorities, corresponding to each �-cut
level

w(�l) = (w1(�l); w2(�l); : : : ; wn(�l))T; l = 1; : : : ; L; 0 = �1 ¡ �2 ¡ · · ·¡ �L = 1:

However, the relative importance of all priorities is not the same and depends on the level of �.
A small value of � yields a construction of interval judgements, having large spreads, which indicates
a high level of uncertainty and correspondingly, less reliable priorities. Basically, the support of
the fuzzy judgements is the safest, but the most pessimistic bracketing of the unknown priority
ratios [10,11]. A larger value of � yields smaller but more optimistic interval judgements, whose
upper and lower bounds have greater degrees of membership in the initial fuzzy sets. When the
fuzzy judgements are represented as fuzzy triangular numbers, the cutting at level �= 1 produces
a set of crisp judgements, equal to the most possible value mij of the fuzzy comparison ratios
ãij = (lij; mij; uij). Hence, the decision-maker would put more trust in the priorities, corresponding to
higher levels of �.

These considerations suggest that the value of � can be used as a weighting factor of the solutions,
so we can obtain aggregated values of the priorities by a weighted sum of the type

Wj =
L∑
l=1

�lwj(�l)

/
L∑
l=1

�l: (16)

The aggregated values of the priorities for all examples from the previous sections are shown in
Tables 4 and 5.

The proposed approach for prioritisation can be used to 4nd global priorities within the AHP,
but then the aggregation should be done after deriving the overall scores of all alternatives at each
�-level cut.

Let us suppose that we have a speci4c three-level decision hierarchy with n criteria and m alter-
natives. We can obtain a set of fuzzy comparisons judgements F = {ãij}; i= 1; 2; : : : ; n− 1; j= 2; 3;
: : : ; n; j¿i, comparing pairwisely all criteria at the second level. For each criterion Ci; i= 1; : : : ; n
we can form another set of fuzzy comparisons Si = {b̃ij}; i= 1; 2; : : : ; m − 1; j= 2; 3; : : : ; m; j¿i,
evaluating the relative importance of the alternatives regarding this criterion.
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Table 4
Results for all two-dimensional examples

Linear method (aggregated priorities) Non-linear method

Equal tolerance Adjusted tolerance
parameters parameters

W1 W2 W1 W2 w1 w2 �

Example 1 0.667 0.333 0.667 0.333 0.667 0.333 1.0
Example 2 0.5 0.5 0.5 0.5 0.5 0.5 1.0
Example 3 0.548 0.452 0.5 0.5 0.5 0.5 1.0

Table 5
Results for the three-dimensional Example 4

Linear method (aggregated priorities) Non-linear method

W1 W2 W3 w1 w2 w3 �

0.1095 0.3126 0.5779 0.1093 0.3121 0.5786 0.708

Decomposing all comparison judgements by �-cuts and applying the FPP method, described
above, we can obtain a sequence of crisp weights w(�l) = (w1(�l); w2(�l); : : : ; wn(�l))T and scores
sj(�l) = (sj1(�l); sj2(�l); : : : ; sjn(�l))T; j= 1; 2; : : : ; m; l= 1; 2; : : : ; L, which are then used in the aggre-
gation procedure.

As in the original AHP method, the overall score of the jth alternative at each �-cut level can be
calculated using the weighted sum

rj(�l) =
n∑
i=1

sji(�l)wi(�l): (17)

The overall scores of the alternatives, derived in such a way are crisp values.

De nition 3. The alternative Ai strongly dominates the alternative Aj if and only if ri(�l)¿rj(�l) for
all l= 1; 2; : : : ; L.

The alternative that strongly dominates the others (if it exists) should be chosen in the 4nal
ranking. When none of the alternatives dominates for all � values, an additional ranking, as in (16)
should be carried out.

The weighted overall score of the jth alternative can be de4ned as

Rj =
L∑
l=1

�lrj(�l)=
L∑
l=1

�l: (18)
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Fig. 7. Overall scores of the alternatives, Buckley’s example.

8. Numerical example

We consider the example of Buckley [8], where the government wishes to rank various energy
sources from most important to least important. The alternatives are A1 = nuclear; A2 = hydroelectric;
A3 = fossil, and A4 = solar. There are two criteria. C1 represents economical and political
considerations, while C2 represents military and defence considerations. For the data of the pair-
wise comparisons at each level of the hierarchy the reader can refer to [8]. It should be noted that
the comparison ratios in this example are represented as fuzzy trapezoidal numbers.

The overall scores of the alternatives rj(�l) derived by our approach are shown graphically in
Fig. 7. It can be seen that r3¿r2¿r1¿r4 for all values of �. According to our de4nition of strong
dominance, we can conclude that A3 is the most important energy source, followed by A2, while
A4 is the least important one. A1 is just slightly better than A4.

Solving this example by the fuzzy geometric mean method, Buckley concludes that A2 and A3

have highest and approximately equal importance, while A1 and A4 are less important alternatives.
Since the fuzzy scores of A2 and A3, and of those of A1 and A4, obtained by Buckley’s fuzzy
method overlap strongly, the author suggests that an additional study comparing only A2 and A3

would be needed if only one best alternative is required. In our approach, the overall scores of A2

and A3, and correspondingly those of A1 and A4 are also quite close, but the alternatives can be
distinguished and ranked more precisely.

9. Non-linear fuzzy prioritisation

The proposed fuzzy approach to prioritisation needs a number of �-cuts, solving the linear programs
(10), and eventually an aggregation of the priorities derived at the di5erent �-levels. In order to avoid
some of these steps, in this section we propose a non-linear method for prioritisation, which can
4nd directly crisp values of priorities from a set of comparison judgements, represented as triangular
fuzzy numbers.
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We want to 4nd a crisp priority vector, so that the ratios approximately satisfy the initial fuzzy
judgements ãij = (lij; mij; uij) or

lij6̃
wi
wj
6̃uij: (19)

Instead of transforming these double-side inequalities into single-side linear fuzzy constraints, as in
(4), for each fuzzy judgement we can construct a membership function, which is linear with respect
to wi=wj:

�ij

(
wi
wj

)
=




(wiwj − lij)
mij − lij ;

wi
wj
6 mij;

(uij − wi
wj

)

uij − mij ;
wi
wj
¿ mij:

(20)

Function (20) is linearly increasing over the interval (−∞; mij) and linearly decreasing over the
interval (mij;∞). It takes negative values when wi=wj¡lij or wi=wj¿uij and has a maximum value
�ij = 1 at wi=wj =mij. Over the range (lij; uij) the membership function (20) coincides with the fuzzy
triangular judgment ãij = (lij; mij; uij).

Compared to the membership functions (6), which are linear with respect to the priorities wi; i=
1; 2; : : : ; n, but lead to a non-linear membership function of the feasible area, regarding the ratios
wi=wj, as shown in Fig. 2, function (20) is non-linear with respect to the decision variables, but
provides a fuzzy feasible area, linear in these ratios.

As in Section 4, we can de4ne a fuzzy feasible area on simplex (7), as the intersection of all
membership functions (20) and apply a max–min-approach for 4nding the maximising solution. This
leads to the following non-linear optimisation problem:

maximise �

subject to (mij − lij)�wj − wi + lijwj 6 0;

(uij − mij)�wj + wi − uijwj 6 0;
n∑
k=1

wk = 1; wk ¿ 0; k = 1; 2; : : : ; n

i = 1; 2; : : : ; n− 1; j = 2; 3; : : : ; n; j ¿ i:

(21)

In contrast to the previous optimisation problem (10), which is linear and can easily be solved
using the simplex method, the solution of the above non-linear problem (21) needs some appropriate
numerical method for non-linear optimisation to be employed. The optimal value of the consistency
index �, if it is positive, indicates that all solution ratios completely satisfy the initial judgments, i.e.
lij6wi=wj6uij. If the consistency index has a negative value it indicates that the fuzzy judgements
are strongly inconsistent and the solution ratios approximately satisfy them.

Modifying the membership functions (20) by introducing tolerance parameters as in (6), we can
obtain an extended fuzzy feasible area, whose membership function is positive for inconsistent ratios
as well. Then, in the inconsistent cases, the consistency index will also have a positive value.
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The sequential quadratic programming method, implemented in the CFSQP package [19] was used
for solving all previous examples by the proposed non-linear prioritisation method. The results are
shown in Tables 4 and 5.

In the consistent two-dimensional examples with symmetrical fuzzy numbers, the priorities derived
by the non-linear method are equal to those of the linear one, because the maximums of the linear
and non-linear fuzzy feasible areas correspond to the same ratio, but if the fuzzy judgements are
skewed or inconsistent, the results are slightly di5erent.

10. Summary and conclusions

The linear and non-linear methods for solving the fuzzy prioritisation problem, proposed in this
paper have some common characteristics. Both methods:

• derive priorities from fuzzy pairwise comparison judgements and do not need the construction of
fuzzy comparison matrices of skewed reciprocal elements;

• allow for prioritisation from an incomplete set of judgements;
• use a max–min optimisation approach;
• derive crisp priorities and do not need an additional ranking procedure;
• can easily be applied for group decision-making.

The proposed �-cut approach has some further advantages. It treats all fuzzy judgements in a
unique way and is invariant to the speci4c form or the shape of the fuzzy sets. This property
provides opportunity for solving prioritisation problems with mixed types of comparison judgements,
such as fuzzy sets of di5erent forms, intervals or crisp numbers (singletons). Finally, the prioritisation
problem is stated as a linear optimisation program, which can easily be solved.

The main advantage of the non-linear method for prioritisation is that it does not need an ad-
ditional aggregation and ranking, but it requires a non-linear optimisation procedure. In its present
formulation, the non-linear method is suitable for prioritisation problems, where the judgements are
represented as triangular fuzzy sets, but it can easily be modi4ed for other types of fuzzy judgements.
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